<>
题目大意:
有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王子可以和几个妹子结婚,按序号升序输出妹子的编号,这个表应满足所有的王子最终都有妹子和他结婚。
解题分析: <转载于 >
如果王子u喜欢妹子v,则建一条边u指向v(u,v),对于大臣给出的初始完美匹配,如果王子u和妹子v结婚,则建一条边v指向u(v,u),然后求强连通分量。对于每个王子和妹子,如果他们都在同一个强连通分量内,则他们可以结婚。
为什么呢?因为每个王子只能和喜欢的妹子结婚,初始完美匹配中的丈夫和妻子之间有两条方向不同的边可以互达,则同一个强连通分量中的王子数和妹子数一定是相等的,若王子 x 可以和另外的一个妹子 a 结婚,妹子 a 的原配王子 y 肯定能找到另外一个妹子 b 结婚,因为如果找不到的话,则 x 和 a 必不在同一个强连通分量中。
所以一个王子可以和所有与他同一强连通分量的妹子结婚,而这不会导致同一强连通分量中的其他王子找不到妹子结婚。
(证明:王子为什么不能选择不同强连通分量的妹子:
反证法:如果强连通分量 1 中的王子选择了强连通分量 2 中的妹子,那么势必强连通分量 2 中的一个王子无法在自己的强连通分量中找到妹子,那么他就会去别的强连通分量找妹子,这样一直循环下去,我们知道最终一定是经过了强连通分量 1,2,x1,x2,xn,……,1,王子们才能都找到自己的妹子,这样这些强连通分量1,2,x1,x2,xn,……,1会构成一个强连通分量,与题设在不同强连通分量中找妹子不符)。
1 #include2 #include 3 #include 4 #include 5 using namespace std; 6 7 #define mem(a,b) memset(a,b,sizeof(a)) 8 const int N = 5e3+10; 9 10 int n,tot,scc,top;11 int stk[N],dfn[N],low[N],belong[N],instack[N],ans[N];12 vector >G;13 void init(){14 tot=scc=top=0;15 mem(dfn,0);16 mem(stk,0);17 mem(low,0);18 mem(belong,0);19 mem(instack,0);20 G.clear(),G.resize(N);21 }22 void Tarjan(int u){23 low[u]=dfn[u]=++tot;24 stk[++top]=u;25 instack[u]=1;26 int v;27 for(int i=0;i
2018-11-09